Large-scale growth of hierarchical transition-metal vanadate nanosheets on metal meshes as monolith catalysts for De-NO(x) reaction.

نویسندگان

  • Lei Huang
  • Xin Zhao
  • Lei Zhang
  • Liyi Shi
  • Jianping Zhang
  • Dengsong Zhang
چکیده

A facile method is developed for the large-scale growth of hierarchical transition-metal (Cu, Fe, and Ni) vanadate nanosheets on corresponding metal mesh as supports. The hierarchical transition-metal vanadate nanosheets were in situ grown on the metal meshes through an orientational etching process and simultaneous nucleation and growth process. Interestingly, the morphologies of the vanadate nanosheets are governed by the balance between dissolution rate and nucleation rate. Thus, the sizes and the thicknesses of the nanosheets could be facilely controlled by the reaction duration, the acidity of the solution and the concentration of vanadate precursor. Furthermore, the hierarchical transition-metal vanadate nanosheets supported on metal meshes are used as monolith catalysts for the selective catalytic reduction (SCR) of NO with NH3. The iron mesh based monolith catalyst shows excellent de-NOx performance with high efficiency and stability in the presence of SO2 and H2O, which provide a promising monolith de-NOx catalyst for stationary source at medium temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe(2-x) nanosheets for high-performance hydrogen evolution.

MoSe2 nanosheets have been extensively pursued due to the outstanding properties of this typical layered transition metal dichalcogenide (LTMD). In this work, we report a facile, fast strategy to synthesize scalable hierarchical ultrathin MoSe2-x (x ∼ 0.47) nanosheets. The nanosheets possess 2-5 Se-Mo-Se atomic layers and were synthesised through a bottom-up colloidal route within 20 mins under...

متن کامل

Effect of Additives on Mn/SiO2 Based Catalysts on Oxidative Coupling of Methane

The Oxidative Coupling of Methane (OCM) over M-Na-Mn/SiO2 catalysts (M=W, Cr, Nb and V) was investigated using a continuous-flow quartz reactor at 775°C, 1 atm and 100 cm3min-1 gas flow rates, and correlated with the observed structure and redox properties.The interaction effects of the metal-metal and metal-support on the...

متن کامل

Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction.

Two-dimensional (2D) transition-metal dichalcogenide (TMD) nanosheets have emerged as a fascinating new class of materials for catalysis. These nanosheets are active for several important catalysis reactions including hydrogen evolution from water. The rich chemistry of TMDs combined with numerous strategies that allow tuning of their electronic properties make these materials very attractive f...

متن کامل

Dissymmetric dinuclear transition metal complexes as dual site catalysts for the polymerization of ethylene

A series of dissymmetric dinuclear complexes were synthesized, as dual site catalysts in ethylene polymerization, by coupling the allylated a-diimine complexes of the metals Ti, Zr, V, Ni and Pd with the ansa-zirconocene complex [C5H4-SiH(Me)-C5H4]ZrCl2 possessing a hydride silane moiety. The different stages of syntheses included the formation of bis(cyclopentadienide)methyl silane which was u...

متن کامل

MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts

The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal-organic framework nanosheets, denoted as CoP-NS/C, has been develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2015